389 research outputs found

    Facing the issues of deep grey matter segmentation in MS

    Get PDF

    A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry

    Full text link
    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark content of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong non-gravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO.The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The apparatus is now being constructed

    Constraints On The Topology Of The Universe From The WMAP First-Year Sky Maps

    Full text link
    We compute the covariance expected between the spherical harmonic coefficients aâ„“ma_{\ell m} of the cosmic microwave temperature anisotropy if the universe had a compact topology. For fundamental cell size smaller than the distance to the decoupling surface, off-diagonal components carry more information than the diagonal components (the power spectrum). We use a maximum likelihood analysis to compare the Wilkinson Microwave Anisotropy Probe first-year data to models with a cubic topology. The data are compatible with finite flat topologies with fundamental domain L>1.2L > 1.2 times the distance to the decoupling surface at 95% confidence. The WMAP data show reduced power at the quadrupole and octopole, but do not show the correlations expected for a compact topology and are indistinguishable from infinite models.Comment: 16 pages, 5 figure

    Time-Varying Fine-Structure Constant Requires Cosmological Constant

    Get PDF
    Webb et al. presented preliminary evidence for a time-varying fine-structure constant. We show Teller's formula for this variation to be ruled out within the Einstein-de Sitter universe, however, it is compatible with cosmologies which require a large cosmological constant.Comment: 3 pages, no figures, revtex, to be published in Mod. Phys. Lett.

    Correspondence between Electro-Magnetic Field and other Dark Energies in Non-linear Electrodynamics

    Full text link
    In this work, we have considered the flat FRW model of the universe filled with electro-magnetic field. First, the Maxwell's electro-magnetic field in linear form has been discussed and after that the modified Lagrangian in non-linear form for accelerated universe has been considered. The corresponding energy density and pressure for non-linear electro-magnetic field have been calculated. We have found the condition such that the electro-magnetic field generates dark energy. The correspondence between the electro-magnetic field and the other dark energy candidates namely tachyonic field, DBI-essence, Chaplygin gas, hessence dark energy, k-essenece and dilaton dark energy have been investigated. We have also reconstructed the potential functions and the scalar fields in this scenario.Comment: 11 pages, 7 figure

    De-Sitter-spacetime instability from a nonstandard vector field

    Full text link
    It is found that de-Sitter spacetime, the constant-curvature matter-free solution of the Einstein equations with a positive cosmological constant, becomes classically unstable due to the dynamic effects of a certain type of vector field (fundamentally different from a gauge field). The perturbed de-Sitter universe evolves towards a final exotic singularity. The relevant vector-field configurations violate the strong and dominant energy conditions.Comment: 10 pages, v7: published versio

    A Testable Solution of the Cosmological Constant and Coincidence Problems

    Full text link
    We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, Λ\Lambda, is linked to other observable properties of the universe. This is achieved by promoting the CC from a parameter which must to specified, to a field which can take many possible values. The observed value of Lambda ~ 1/(9.3 Gyrs)^2(approximately10(−120)inPlanckunits)isdeterminedbyanewconstraintequationwhichfollowsfromtheapplicationofacausallyrestrictedvariationprinciple.Whenappliedtoourvisibleuniverse,themodelmakesatestablepredictionforthedimensionlessspatialcurvatureofOmegak0=−0.0056sb/0.5;wheresb 1/2isaQCDparameter.Requiringthataclassicalhistoryexist,ourmodeldeterminestheprobabilityofobservingagivenLambda.TheobservedCCvalue,whichwesuccessfullypredict,istypicalwithinourmodelevenbeforetheeffectsofanthropicselectionareincluded.Whenanthropicselectioneffectsareaccountedfor,wefindthattheobservedcoincidencebetweentLambda=Lambda(−1/2)andtheageoftheuniverse,tU,isatypicaloccurrenceinourmodel.IncontrasttomultiverseexplanationsoftheCCproblems,oursolutionisindependentofthechoiceofapriorweightingofdifferent (approximately 10^(-120) in Planck units) is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible universe, the model makes a testable prediction for the dimensionless spatial curvature of Omega_k0 = -0.0056 s_b/0.5; where s_b ~ 1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given Lambda. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t_Lambda = Lambda^(-1/2) and the age of the universe, t_U, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different \Lambda$-values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.Comment: 31 pages, 4 figures; v2: version accepted by Phys. Rev.

    Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy

    Get PDF
    Introduction Despite the recognized importance of atrophy in multiple sclerosis (MS), methods for its quantification have been mostly restricted to the research domain. Recently, a CE labelled and FDA approved MS-specific atrophy quantification method, MSmetrix, has become commercially available. Here we perform a validation of MSmetrix against established methods in simulated and in vivo MRI data. Methods Whole-brain and gray matter (GM) volume were measured with the cross-sectional pipeline of MSmetrix and compared to the outcomes of FreeSurfer (cross-sectional pipeline), SIENAX and SPM. For this comparison we investigated 20 simulated brain images, as well as in vivo data from 100 MS patients and 20 matched healthy controls. In fifty of the MS patients a second time point was available. In this subgroup, we additionally analyzed the whole-brain and GM volume change using the longitudinal pipeline of MSmetrix and compared the results with those of FreeSurfer (longitudinal pipeline) and SIENA. Results In the simulated data, SIENAX displayed the smallest average deviation compared with the reference whole-brain volume (+ 19.56 ± 10.34 mL), followed by MSmetrix (− 38.15 ± 17.77 mL), SPM (− 42.99 ± 17.12 mL) and FreeSurfer (− 78.51 ± 12.68 mL). A similar pattern was seen in vivo. Among the cross-sectional methods, Deming regression analyses revealed proportional errors particularly in MSmetrix and SPM. The mean difference percentage brain volume change (PBVC) was lowest between longitudinal MSmetrix and SIENA (+ 0.16 ± 0.91%). A strong proportional error was present between longitudinal percentage gray matter volume change (PGVC) measures of MSmetrix and FreeSurfer (slope = 2.48). All longitudinal methods were sensitive to the MRI hardware upgrade that occurred during the time of the study. Conclusion MSmetrix, FreeSurfer, FSL and SPM show differences in atrophy measurements, even at the whole-brain level, that are large compared to typical atrophy rates observed in MS. Especially striking are the proportional errors between methods. Cross-sectional MSmetrix behaved similarly to SPM, both in terms of mean volume difference as well as proportional error. Longitudinal MSmetrix behaved most similar to SIENA. Our results indicate that brain volume measurement and normalization from T1-weighted images remains an unsolved problem that requires much more attention

    Deforming the Maxwell-Sim Algebra

    Get PDF
    The Maxwell alegbra is a non-central extension of the Poincar\'e algebra, in which the momentum generators no longer commute, but satisfy [Pμ,Pν]=Zμν[P_\mu,P_\nu]=Z_{\mu\nu}. The charges ZμνZ_{\mu\nu} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincar\'e, this being the symmetry algebra of Very Special Relativity. It admits an analogous non-central extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISimb_b, where bb is a non-trivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force.Comment: Appendix on Lifshitz and Schrodinger algebras adde

    Proper Size of the Visible Universe in FRW Metrics with Constant Spacetime Curvature

    Full text link
    In this paper, we continue to examine the fundamental basis for the Friedmann-Robertson-Walker (FRW) metric and its application to cosmology, specifically addressing the question: What is the proper size of the visible universe? There are several ways of answering the question of size, though often with an incomplete understanding of how far light has actually traveled in reaching us today from the most remote sources. The difficulty usually arises from an inconsistent use of the coordinates, or an over-interpretation of the physical meaning of quantities such as the so-called proper distance R(t)=a(t)r, written in terms of the (unchanging) co-moving radius r and the universal expansion factor a(t). In this paper, we use the five non-trivial FRW metrics with constant spacetime curvature (i.e., the static FRW metrics, but excluding Minkowski) to prove that in static FRW spacetimes in which expansion began from an initial signularity, the visible universe today has a proper size equal to R_h(t_0/2), i.e., the gravitational horizon at half its current age. The exceptions are de Sitter and Lanczos, whose contents had pre-existing positions away from the origin. In so doing, we confirm earlier results showing the same phenomenon in a broad range of cosmologies, including LCDM, based on the numerical integration of null geodesic equations through an FRW metric.Comment: Accepted for publication in Classical and Quantum Gravit
    • …
    corecore